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Doubly periodical in time and energy exactly soluble 
system with two interacting systems of states 

Yu N Demkovt, P B Kurasovt$f and V N Ostrovskyt 
t Institute for Physics, St. Petersburg University, 198904 St Petersburg, Russia 
$ Depanment of Mathematics, Lule3 University, 97187 Luiel, Sweden 

Received 17 lune 1994. in final form 12 October 1994 

Abstract. The time-dependent matrix Schriidinger equation k% = ‘Fl(t)W describing two 
bands of an infinite numb& of equidistant states with different energy spacings 04 in each band 
is studied. Both bands” linearly dependent on timet. Thcinteraction v = (,,GZZ&r) tanns 
beheen the bands is considered to be equal for any pair of states from each band. Using 
the Fourier series wansfomtion the instant eigenvalues E ( f . s )  are calculated which reveal 
the double periodicity in the energy-time plane. The ~rresponding eigenvalue surface in the 
(E, f .  +space, apan from the niple periodiciq, shows quite unexpected symmetry propelties 
relative to the exchange o f t  and .r, and relative to some inversions in the (E, I) plane, The latter 
one leads to a new equivalence between weak and strong coupling. a new ldnd of pseudocrossing 
and a new concept of Ftidiabatic states. The Fourier transformation reduces the problem to a 
2 x 2 first-order differential operator. The diagonalization of ‘Mi) for fixed I produces explicit 
expressions for the eigenvalues (adiabatic potential curves) and eigenstam (adiabatic basis). 
The time evolution aperator is calculated both in the diabatic abd adiabatic representations. The 
results are simplified for the special value of the interaction parameter, 

1. Introduction 

The time-dependent matrix Schrodinger equation is considered. Such operators are used, 
for instance, in atomic physics to describe moleculemolecule collisions. A broad class of 
quantum problems of practical importance can be described in terms of the transitions 
between two systems (bands) of parallel potential curves. The potential curves are 
understood here to be the eigenvalues of the Hamiltonian H ( h )  which depends on some 
parameter A. 

In the static aspect of the problem the objects of interest are the peculiarities in A- 
dependence of the potential curves and of the related eigenfunctions (adiabatic states). It is 
well known that, generally, the potential curves do not cross each other (Neumann-Wigner 
non-crossing rule, see e.g. Landau and Lifshitz [7]) provided that the related adiabatic 
state belongs to the same irreducible representation of the exact symmetry group of %(A). 
5 Alexander von Humboldt fellow, Depanment of  Mathematics, Ruhr University-BoFhum, 44780 Bochum, 
Germany. 
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However, so called avoided crossings (or pseudocrossings) can occur which often have a 
solid foundation in the physics of a specific system. 

In the dynamic formulation, A becomes a function of time t defined by the physical 
content of the problem. The object of interest is the matrix of the time propagator. In 
physical problems the adiabatic states vary rapidly with A in some special regions of i 
(near the avoided crossings of two or more potential curves). The alternative choice is the 
diabatic basis of states which represents a somewhat loosely defined notion. Generally it is 
chosen so that in the generating physical problem the basis functions vary smoothly with 
A. The diabatic potential curves are defined as the diagonal elements of the Hamiltonian in 
the diabatic basis. These curves can cross each other at certain values of A which indicates 
that, in the diabatic approximation, the physical system has higher symmetry than the exact 
Hamiltonian. 

The simplest model of this type-the Landau-Zener model [6,1l]--describes the 
situation when the instantaneous Hamiltonian has only two energy levels. Pseudo-crossing 
of these levels is considered. The Demkov-Osherov model [Z] describes the crossing of 
several parallel energy curves by one particular curve. Some generalizations of the Landau- 
Zener model were analysed recently by Brundobler and Elser [l]. An important problem 
is the intersection of the two families of potential curves. The complexity of the solution 
of this problem grows with the number of levels considered. The case of a large number 
of potential curves is interesting in some applications. For example, the interaction of two 
Rydberg series of energy levels can be approximated by two equidistant families of potential 
curves. This problem is considered in the present paper. It appears that it has a solution 
in terms of elementary functions for the limit when the number of C U N ~ S  in each band is 
infinite. 

The important and unique property of the model considered here is its double periodicity 
in time and energy. ApparentIy this i s  the simplest non-trivial model of this kind and, 
therefore, it is worth full consideration. Hamiltonians that are periodic in time only have 
been considered by many authors and the concept of quasi-energy has been introduced 
in this respect. The quasi-energy E and the quasi-energetic states Ye are defined by the 
condition Y,(t + TO) = exp(isTo)Y,(t). where To is the period of the Hamiltonian E(t) 
(see e.g. Manakov et 01 [SI). The energy shift periodicity has also been considered by some 
authors [lo]. The general properties of systems that are periodic in time and energy can be 
understood using the investigating model. 

Some examples of the physical realization of the band-crossing problem were discussed 
recently by Demkov and Oskovsky [4]. The general properties of the potential curves were 
established and a special model with an infinite number of parallel and equidistant potential 
curves was formulated. A more detailed analysis of the latter model, in both its static and 
dynamic aspects, constitutes the main object of this paper. The model is generalized to the 
case when the curve spacing is different in each band. The dynamical properties of the 
model are investigated in this paper. A striking similarity between the time parameter t ,  
interaction parameters and energy parameter E has been discovered (see formulae (14) and 
(15)). The evolution operator is calculated. 

It is convenient to formulate the model in  the diabatic-basis. Each band contains an 
infinite number of potential curves. The related diabatic states form the Hilbert space &. 



... p+t-o+ 0 0 

... 0 p+t 0 
.... 0 0 p+t+w+ 

X(t) = 

...... U v U ... 

. . . . . .  U v v ... 

. . . . . .  U v v ... 

... v U U 

... v U v 

... v U v 

The diubutic potential curves are the diagonal matrix elements of 'FI in the chosen basis 

E = D+,m = &t + o+m m E 7%. 

They depend linearly on time t with the slopes &, with o+ the spacings between the 
potential curves in each band. The bands are labelled by the subscript *. The interaction is 
introduced only between the levels from the different bands. We assume that the interaction 
(or coupling) does not depend on the distance between the levels. So, in the U = 0 limit the 
two infinite equidistant systems of parallel lines crossing each other form, in the ( E ,  t)-plane, 
an infinite grid of parallelograms with an evident double periodicity. 

We are going to study the related dynamical problem 

...... p - r - o -  0 0 ... 

...... o p - t o  ... 

...... 0 0 ~p-r +o- ... 

with the constant c introduced for convenience. 

help of the phase transformation 
The common linear term can be removed from the diagonal of the matrix X(t) with the 

F ( t )  = ew++B-)t'/4Fo(t), 

The function Fo(#) satisfies the equation 

The matrix Xo(t)  = H ( t )  - vf is of the same form as (1) but with equal slopes for 
the diabatic potential curves. Hence, it is sufficient to consider the operators X(t) with 
p+ = -p- = p 'only. The same transformation can be used to obtain the equation with 
the following linear dependence of the Hamiltonian on time A + E t  with constant matrices 
A ,  E .  This problem has been analysed recently by Brundobler and Elser [l]. 

We are going to use the symmetrical form of the Hamiltonian only. Dividing the 
operator X by p one obtains the equation of the same form with B = 1, and new values of 
the parameters U+ and c. Hence, we can restrict our consideration, without losing generality, 
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to the operators X(t) with unit slopes for the diabatic potential curves: 
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n(t) = 

... t -w+ 0 0 ... 

... 0 t 0 ... 
.... 0 0 t + w +  ... 

... U U U ... 

... U U U ... 

... U U U ... 
. ~. 

... U U U ... 

... U U U ... 

... U U U ... 

... - t -w-  0 0 ... 

... 0 -t 0 ... 

... 0 0 - t+w-  ... 

(3) 

This operator was est analysed [4,91 in the original (diabatic) representation for equal 
spacings between the energy levels in both bands, i.e. for w+ = w- only. The energy levels 
for the perturbed problem were calculated, and the whole set of the potential curves was 
analysed. The system of potential curves is a periodic function in time for this model. The 
important features of the time evolution were characterized. 

We continue this investigation, concentrating our attention on the problem with different 
level spacings in the bands. Using a Fourier transformation, the matrix operator (1) 
is transformed to a 2 x 2 first-order matrix differential operator over the interval. The 
differential form of the operator is independent of the interaction parameter U. The 
interaction is introduced by u-dependent boundary conditions at the end points of the 
interval. We show that the operator is self-adjoint. Normalized diabatic and adiabatic 
eigenfunctions are obtained (section 2). 

The evolution operator, corresponding to the dynamical equation (Z), is calculated for 
all values of the parameters using the modulated translational invariant form for the solution 
of the difFerentia1 equation. Simplified formulae are derived for the case of equal spacings 
in the bands. This common value of the spacing can be assumed to equal unity because 
the scaling transformation f + t /w  transforms the problem with equal spacing o to the 
problem with unit spacing. Evolution in this case is investigated in detail. The evolution 
operator for the half period is of particular interest. Simplified formulae are presented for 
the case when the frequency of the lransitions between the levels coincides with the two 
inverse periods of the Hamiltonian (section 3). 

If the interaction parameter U is equal to w / x ,  then the system of the adiabatic curves 
is independent of the time. It is shown that the evolution operator on the period is also 
independent of the initial time and equals the diabatic evolution operator. The evolution 
operator over half a period is antidiagonal: the initial data with support on one of the family 
of energy levels are transformed during the half-period to certain initial data with support 
on the other family. During the second-half of the period the data are transformed back to 
the first family of energy levels. The shift occurs on one level only. The adiabatic evolution 
operator is calculated (section 4). 

We do not need to separately consider the cases of U+ # w- and p+ # p-, when 
investigating the static eigenvalue problem for a given U, t. If the system of energy curves 
is not symmetric, then certain linear transformations of the ( E ,  +plane can be performed 
and the parallelograms can be transformed into squares. Then the problem is reduced to 
w+ = w- = 1, p+ = p- = I. The values of w+,w- are important for the dynamical 
problem only. 
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2. Stationary problem 

Consider the matrix operator X ( t )  in e 2  @ ez. The representation given by the matrix X ( t )  
(3) will be referred to as the diabatic representation. The domain of the operator coincides 
with the set of all elements I from e2@!2, which are solutions of the equation 'H(t )W = F 
for certain F E e2  @ 82.  More precisely, the  element Iv = ($+, @-) E e2  @ e2 belongs to 
the domain of H ( t )  if and only if the following conditions are satisfied. 

(i) The sums V P ~ ,  $+." converge in the principal value sense: V P ~ "  $.a,. = 

We are going to use the Fourier,transformation 

The Fourier transformation of the operator X ( t )  will be denoted by '%(t). This operator 
is defined on the two-coFponent functions @ = ($+, &) E L2(0,2n) @ Lz(0, Zn)] The 
domain of the operator X ( t )  consists of functions 0 which are Fourier transformaiions of 
the elements from &eB& satisfying conditions (i) and (ii). The second condition is satisfkd 
only if $* E Wi(0,Zx).  It follows that the boundary values $+(O), $&n) exist and  are^ 

finite and the first condition is fulfilled. For the functions &(rp) the second condition is 
equivalent to the conditions 

These conditions are satisfied if and only if 

k E w: (0,27r) 

and 

The last conditions can be written in the form 

We 
- 

--t +io-- 
8(0 

H ( f )  = 

with the domain of  all^ functions from @CO, h) 8 Wi(0, 2n) satisfying the boundary 
conditions (4). 
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We are going to show that the operator g(t) is equal to a matrix operator with the 
singular interaction at the origin: 

The correct mathematical definition of operator (7) can be given in the framework of the 
distribution theory for discontinuous test functions (see [5] for details). Operator @(t) is a 
matrix first-order differential operator of the form 

with the constant matrices 

where 

are the Pauli matrices. The domain of the operator 2(t) consists of all vector valued 
two-component functions +(rp) = ($+(rp), $-(fp)), which are solutions of the equation 
.A@)+ = F for certain functions F E L2(012z) L2(0. 2n). Function $* i s  a solution 
of the first-order diagonal matrix differential equations with constant coefficients at every 
point 'p # 0,Zn: 

It follows that both components of the solution are continuous functions inside the interval; 
moreover, \i E W i  (0,2z) @ W i  (0,Z.z). Every function from the domain of this operator 
is a solution of the equation 

This equation does not have any solution in the class of continuous functions S!. The natural 
assumption that the &function is an even function can be used. This assumption leads to a 
formula for the delta function, defined on the discontinuous test functions [5]: 

(10) 
16-(+0) + $(&) 

2 617h.I = 

We then obtain boundary conditions for the function at the point 'p = 0,2z by integrating 
equation (9) from 2n - E to +e with  respect to the variable 'p and considering the limit 
E + O  

These conditions can be written in the form 

@(o) = (CZ - iv/z)-'(Q + iv/~)+(2n) 

and coincide with the boundary conditions defined by the matrix r (5). 
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We note that the differential f o k  of the operator is independent of the interaction 
parameter v. Only the boundary conditions contain this dependence. The matrix r has a 
simpler form if the following notations are used: 

i r U  
~ = tanas --f~ 
$=G 

If the spacings between the levels in the bands are equal i.e. m+ = U-, then the matrix I’ 
is unitary and can be written as an exponential: r = ekiJul, where U, is the Pauli matrix. 

The operator g(t) is self-adjoint for all values of m-, U+. Indeed, the boundary form 
of the operator is 

{(R(f)lir, 6) )~ -  ((*, R(t)6)) 
i [U+ { ++(w= - ++(o)GG} - 
+U_ { + - ( k ) G  - 41(0)&(0)}] = 0. 

Here {{*, e)) denotes the standard scalar product in &(O. Za) 8 L z ( 0 , k ) .  The adjoint 
operator $ ( t )  is defined by the same differential expression on a subset of functions from 
Wi (0,Z.n) 8 Wi (0,Zir). Any ,element G from this domain defines a continuous form on 
the domain of the operator Q(t)  by the formula ( (QFiF ,  G)) only if this element satisfies the 
same boundary conditions (4). Thus, the operator R(t) is self-adjoint. 

The operator R ( f )  has a purely discrete spectrum (the adiabatic potential curves), which 
depends on the parameter f. The related eigenfunctions satisfy the equations 

a -  
It++ + im+--$+ = EJ+ aw 

with the boundary conditions (4). The general solution of system (11) is 
++ = c+e(i(r--B)Wm+ 
q- = C-e(-i(t+E)(o)fo- (12) 1- 

where the constants c* can be calculated by substituting ansatz (12) into the boundary 
conditions (4): 

(in(t-E))/o+ cos sin E!$2 e-(Nt+E))/w- sinns cos E k k E l  

e(irO-E))/o+ sinns cos M 

(13) 
This linear system has solutions if and only if the determinant of the mahix is equal to 

zero. This condition defines .the adiabatic spectrum of the problem: 

+ E )  + (tanns)’ = 0. n(f - E )  
tan tan 

U+ 0- 

We first discuss the system of potential curves for the case w- =U+ = 1. This will be 
referred to as the symmetric case. The dispersion (eigenvalue) equation for this case was 
first derived using the diabatic representation by Demkov and Ostrovsky [4]. Another form 
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of the dispersion equation, in this case, shows the &king similarity between the parameters 
t and s: 

Yu N Demkov et a1 

tanas)* + (tan rt)' 
1 + (tanrs)Z(tannf)'' 

(tanxE)'= ( 

This formula defines a surface in the ( E ,  s, +space which is eiple periodic along all 
three axes with all three periods equal to one. The general shape of this surface is presented 
in figure 1. The equi-energy curves are shown by figure 2. 

,,..,, 

Figure 1. The system of potential surfaces for the symmetric case U- =U+ = 1. All properties 
considered in cases (1)-(9) can be seen. 

FigureZ.Equi-energycu~esE=0.5,0.15,0.20,OR5,0.30,0.35,0.40,0.45foro+=o~=1. 
Transitions from the ellipse in the vicinity of the degenerate points to the rectangles in the iso- 
energetic region can be easily seen. 

Let us consider the intersections of this surface with the planes defined by the equations 
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tanxs, tannt and tanxE equal to 0 , l  or infinity. 
0 1 0 0  

t a n m  1 2 3 
tannt 4 5 6 
tanxE 7 8 9 

(1) Purely diabatic case E = f t+n .  Rectangular grid of two mutually crossing infinite 
equidistant parallel straight l i e s  in the (E, t)-plane. 

(2) E = n + $, iso-energetic case, all lines are f independent parallel with the distance 
112. 

(3) Antidiabatic case E = n + $ f $. The rectangular grid with the crossing points in 
the centres of the diabatic grid (case (1)). 

(4) E = f s  + n. The energy curves form a rectangular grid in the ( E ,  s) plane. Ifs is 
small, then this formula indicates the pseudocrossing splitting A E  = 2s. 

(5) t annE = f l .  The energy E = n f $ is independent of s. These lines correspond 
to the stationary points in the ( E ,  t )  plane. All E(s, t )  cross at these points. 

(6) tannE = f c o t x s  =r E = f s  + n + 1. Rectangular grid in the (25,s) plane 
between the grid in case (4). 

(7) (a) tanxs = 0 and tannt = 0. The diabatic degeneration points. In the vicinity 
of these points the surface is close to a circular cone, which is the demonstration of the 
Neumann-Wigner theorem; (b) cotxs = 0, cotxt = 0 + s = n + 4, t = m + 4. These 
points form a squarecentred grid in each plane E = n. 

(8) Either s = n f f or t = m f $. The rectangular grid in the (s, r )  plane with the 
(+, +)-size squares. 

(9) Either tanns = O(s = n)  and cotnt = O ( t  = m + f ) ,  or tanxf = O(t = n) and 
cotns = O(s = m + 4). These are the adiabatic crossing points or the antidiabatic conic 
intersections in the ( E ,  t ,  s)-space. The points form a square centred grid shifted by f in 
the t or s direction relative to case (7). 

In the symmetric case the Hamiltonian is:periodic with period one. More precisely, 
Hamiltonians corresponding to different t and t', t - t' = m E Z are unitary equivalent. 
The unitary transformation connecting these operators is the translation of the + and - 
components on the m units in the opposite directions. Note that in the diabatic basis this 
periodicity is hidden, but in the adiabatic representation it appears explicitly. 

The system of the energy curves is invariant with respect to the shift of the parameters 
(s, t )  -+ (s rt 1/2, t rt 112): 

Note that a shift of the parameters on 112: s + s + 112 corresponds to the transformation 
of the parameter U : U + n2/v .  The system of the energy levels is doubly periodic in the 
(t ,  E)-plane with the invariant translation vectors (1. ff): 

E(s f 1/2, t f 112) = E(s, t ) .  

(t. E )  + (t + f ,  E + 4) 
( t .  E )  + (t + f ,  E - ;). 

The structure of the potential curves in the non-symmetric case o+ # o- is similar (see 
figure 3). It is invariant under the translations by the vectors (w-12, w-/2), (w+/2, -w+/2): 

( t ,  E )  + (t + w-12, E + w- /2 )  
(t. E )  + (t + ~ + / 2 ,  E - ~ + / 2 ) .  
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Figure 3. The system of potential NNS for U+ = I ,  0- = 1.7. 

The system of energy levels for all values of  the interaction parameter U (01 s) contains 
the points (t. E )  of both of the types 

We show that the dispersion (eigenvalue) equation is satisfied at the point (w-/4,0-/4) for 
all values of the interaction parameter u(s):  

n Jz 
= s inOsin- (cosn~)~+ (sinxs)2cosOcos- = 0. 2 2 

The other points from this lattice can be considered in the same way. These will be referred 
to as stationary points. They are important for further considerations of the dynamical 
problem. 

The system of energy levels is symmetric with respect io the stationary points. Consider, 
for example, point (0-/4,0-/4). Let ( t .  E )  be a solution of the dispersion equation (14). 
Then, the symmetric point (t’, E’) = (-t + w-/2 ,  -E f 042) is also a solution of the 
dispersion equation: 

x ( - t + E )  tann(-t’-E‘fw-) 
= tan 
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- .  - _  
t 

Figure 4. The potential CUN- in the m i n  pxdelognm for U- = 1, U- = 1.7, J = n f21. n = 
1.2.  . . . , 11. Trmsition from the diabatic m e  (s = 0) through Ihc iso-cncrgeuc (line%) ( r  = f )  
cire IO the anridinbaic casse (I = 4) m be seen 

Let us denote the solution of equation (14) inside the parallelogram with the vertices 
{(O,O), (w-/4,  W 4 ) ,  (-0+/4, w+/4), ((0- - 0+)/4, (0- + w+)/4)1 by E+,o(t). Let the 
potential curve be known in this cell for a fixed vdue of the interaction U (see figure 4). 
Then, the potential curves in the whole ( t .  E )  plane can be restored using the invariance 
transformations described above. Firstly, we can continue this potential curve symmetrically 
with respect to the point (0-/4,0-/4) and it can then be continued using translations by 
the vectors n((w- + w+)/2,  (0- - 0+)/2), n E Z. Another curve is symmetric with respect 
to the point ((U- + 0+)/4, (0- - w+)/4):  

' I ko  series of solutions of the dispersion equation can be introduced: 

In the case of the weak interaction U + 0, the solutions E*," approach the diabatic curves 

D*.,(t) = ktf + mo* m E Z. 
For U = 0 (no interaction occurs) we obtain the standard diabatic levels E = D*,m with the 
crossing points 

The infinite interaction (U = CO) defines the potential curves 

E = f t  + ( m  + ++ m E Z, 
with the crossings at the points 

The curves (actually the straight lines) obtained in the limit of superstrong interaction were 
named antidiabatic by Demkov and Ostrovsky ([4]) . For the small interaction U + 0, one 
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observes avoided crossings of the adiabatic curves in the neighbourhood of the crossings, 
of the diabatic curves. For the large interaction U + 00, a similar picture can be observed 
close to the crossings of the antidiabatic curves. These antidiabatic avoided crossings were 
also obtained for the finite number of states within both bands (see [4]). 

The linear dependence of the adiabatic curves on the parameter t occurs in the case 
unl- = 1, (s = 114). Solutions of the dispersion equation form the straight tines 
passing through the stationary points: 

Yu N Demkov et a1 

We have, in this case, 

and the dispersion equation is satisfied. The potential lines are horizontal in the symmetric 
case w- = w+ = w and the spectrum of the Hamiltonian does not depend on t .  This is 
referred to as the isospectral case: 

E*,,(t) = w ( j . 4  +n)  n E %. 

Another set of lines passing through the stationary points 

corresponds to the complex values of the interaction parameter tanzs = i. These lines 
become vertical in the limit of equal spacing 0- = m+. 

As in the original Landau-Zener model, if the interaction is not equal to zero or infinity, 
i.e. s # 0, 112, then the energy curves intersect at the complex values of the time parameter 
t. These branching points of the E function in the complex t-plane play an important role 
in the calculations of the non-diabatical transitions when the factor in front of the time 
derivative tends to zero. 

Consider the symmetric case for simplicity i.e. U+ = w- = 1. The intersection 
occurs at the points with the same values of the energy pasameter E ,  as the intersection 
of the diabatic and antidiabatic curves, i.e. at the points with EI = 0, f l ,  f2 , .  . .. or 
E2 = f1/2, f3 /2 , f5 /2 , .  . .. Let Is1 << 1, then the first set of the energy values corresponds 
to the time parameter with real part Ret = n, n E Z. The imaginary part o f t  is defined by 
the equation 

(tanrrS)2 + ( tanz ty  = 0. 

The solution is given by 

tanh-’(tanxs) 
t = f i  +n nE%. 

z 
A numerical solution for this equation is presentid in figure 5. Solutions from the second 
set are defined by the values oft with real part Ret = 1/2+ n, n E Z. The corresponding 
equation 

(cotnt)2 + (tanxs)2 = 0 

defines the solution 
tanh-I (tan KS) 

t = f i  +1 /2+n  n E Z .  
R 
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Figure 5. Complex intemtion of the energy surfaces for the symmetric use ot = o- = I .  
These intersections tend to inhity, approaching the iso-energetic use. 

The same phenomenon is observed close to theintersection of the antidiabatic curves. 
Suppose that the interaction is strong, i.e. Is - 1/21 << 1. The energy curves intersect at the 
same values of the energy parameter. The corresponding equations for the parameter f are 

and 

(cotxs)2+ (cotnt)' = 0. 

The solutions are equal to 

tanh-' cot as 
t = f i  +1 /2+n  n 

and 
tanh-'(cotxs) 

t = f i  + n. n 
All the branching points tend to infinity in the isospectral case when all eigenenergies are 
independent of time. 

The time-dependent adiabatic basis {$*3"], which diagonalizes the operator 7?(t), can 
be calculated using the solutions of equation (13). The formulae are presented below for 
the symmetric case U- = U+ = 1 only, to avoid complicated expressions. The structure 
of the formulae corresponding to the general case is essentially the same, although no 
periodicity with respect to the time variable occurs in the general case. The upper index 
(i, n)  corresponds to the energy level E+,., hut the lower index denotes the first and the 
second components of the vector valued function. The matrix R(t) is real in the diabatic 
representation. Hence, the basis can also be chosen real in the diabatic representation. We 
shall use this property to fix the phase of the eigenfunctions. Such a normalized adiabatic 
basis is 

sign(sin x(t  z t  lj4)) sin n(t j, E+,&)) cosxse-ia(tiE+.ll(')l 
.JZ;;,/(cosxs)Z(sinx(t * E+.a(t)j)z + (sinzi)Z(cosr(t E+.o( t ) ) )Z  

4 3 9 )  = 

X&OTEt,oC)-d~ 
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Xe-i(i*E+,dt)+n)i, (16) 
The adiabatic basis is periodic with period two, but the period of the Hamiltonian is 

equal to one in the symmetric case under consideration. This means that Berry's phase in 
this case is equal to z. Note that the coefficients in front of the exponentials are independent 
of the index II. 

In the adiabatic representation this basis has the form 

V*J = ( {$r: : ;} ja ,  r$r:;;l,,z> 
sign(sinYr(f & 1/4))(- cosZzt + cosZzE+,o(f)) 

$r::; = 
2zJ(cosns)z(sinzz(t & ~ + . o ( t ) ) ) ~  + (sinns)Z(cosii(t F ~ + . o ( t ) ) ) z  , 

cos H S  
X 

t T E + o ( t ) - n +  i 

(17) 
sinzs 

t f E+,&) + n - j ' X 

This last formula is valid for all t ,  such that t & &,o(t) Z, and is equivalent to the 
equations (2.1)-(2.6) from the [4] up to the normalization factor, which was not considered 
there. We obtain this formula using the definition of the delta function (10). This shows 
again that the chosen definition of the delta function is natural. The existence of a sign 
factor makes the time periodicity of the $r- equal to two instead of one. 

The adiabatic basis has the simplest form at the stationary points t = 1/4+n/Z, n E Z. 
The basis vectors have a Fourier representation in the form 

- cos Yrs 6 

6 
(18) 

3r+q3/4, (0) = 

Sr-y3/4, (0) = - - cos zse'p 

Although the potential curves are s- independent at the stationary points, the adiabatic 
states explicitly depend on the interaction. They can be compared with the diabatic states, 
e.g. at the point t = 1/4 we obtain 

d ' ( /4. ro) = - $?(1/4, (0) = - 1 (1) e-inp+-n 1 
& E o  

3. Time evolution 

We now consider the time evolution governed by the operator If@): 
i a  If(W(0 = F p ) .  
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This equation corresponds to the differential equation in the Fourier representation 

with the boundary conditions 

(21) 

Both equations are decoupled &d do not depend on the'interaction U (or s) except for the 
tioundary conditions at fp = 0, ?n. Therefore, the general solution of equation (20) has the 
modulated translational invariant form 

(22) 

Thus, the initially prepared, arbitrary wave packet g shifts as time increases in the positive 
direction along the 9 axis. Note that the + and -~ components are moving with different 
speeds. The component shapes are not changed but additional phases are gained which 
differ for + and - components. At the boundaries the components are mixed by the discrete 
transformations. Substitution into the boundary conditions gives a functional equation on 
the functions gi :  

(23) 0 

The time-dependent problem can be solved in the following way. From the initial data 
at timet, one can define functions g+ on the intervals (t  -2n /cw+,  t) and (t  -2n/cw-, t); 
then using the functional equation (23) these functions can be calculated on the whole half- 
axis (t, 00). The functional equation connects the values of the + and - components of the 
function g at different points. The solution procedure can be simplified in the symmetric 
case when the functional equation is solvable by iterations. Let o- = o+ = w,  r = 2z/cw:  
Iterating equation (23) we obtain a formula which connects the values of the functions g&) 
at points f + nr and t :  

where 

W,(t)  = G(t  + nr)G(t + (n - 1 ) ~ ) .  . . G(t  + r )  

G(t) = e is ,2)  r ( eiy (24) 

We shall calculate the evolution operator U ( t ,  f + T )  for the positive values of T > 0. 
The following notations will be used T = mr + a ,  m E Z, 0 <.a < 5 .  Firstly we shall 
define the values of the functions g*(s) on the inteival (t  + T - r,  t + T )  from their values 
on the interval (t  - r,  t ) :  

(2-5) 

g+(t - b + a  - t) 
Xh<aWm+l (t - b + a - r )  g - ( t  - b + a  - 5 )  

f X b > a W m ( t - b + a )  
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Here x denotes the characteristic function 
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Now the evolution operator acts in the Fourier representation: 

Using the shift operator Tof(t, 9) = f ( t ,  9 - 0) the evolution operator can be written in 
the form 

The form of the evolution operator for zero values of a is of particular interest. The 
expression for the evolution operator can be simplified in this case: 

The spacing between the levels can be chosen to be equal to unity, i.e. w = 1. The 
parameter T = %/cm has a simple meaning: this is the period related to the level spacing o 
in the bands. The other period is also intrinsic for the system: the period of the Hamiltonian. 
As shown in section 2, this period is equal to one assuming that the time scaling is performed 
to fix w = 1. The presence of two periods makes the dynamics quite complicated as formula 
(27) shows. Even the propagator over an integer number of periods (28) is not expressed 
in simple terms. 

Considerable simplification is achieved in the case when the periods differ by a rational 
factor. We choose c = 4ir, then r = 4. The evolution operator on the half period and on 
the period is equal, respectively, to 

) (2% 
e-ipz/4"e2iQ(I+1/2),-2nil sin ;?rrs ieWir cos 2xs 

-e'p2/4ne-2iQ(1+1/2)eai* sin2xS -ie-ail cos 2zs  

-ie-iv2/4neW(r+l/2) (1 - e4zit&)sjn4Ks/2 
e-4nir(cos 27~s)' + e+(sin 2irs)' 

The evolution operator between the stationary points is of particular interest: 
-ie-iQ%ne3iQ/2 sin zns 

- cos 2ns 
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) (32) 

One can see that the evolution operator for the half-integer T with respect to the shift 

-(cos 2 ~ s ) '  + e'p(sin 2 ~ s ) ' .  -ie-!p2/4"e2'p cosq/2sin4xs 
-ie'~zl"e-z'pcosq/~sin4ns -(cos2zs)'+ e-'P(sin2zs)2 ' 

0(1/4,5/4) =~ ( 
of variables s + s + 112, t + t + 112 has the property 

. . .  . . . .  . . . .  
... 0 1 0  
.... 0 , 0 1 
... 0 0 0  

4. Jsospectral case 

We now consider the special case when xv  = 1, w = 1, c = 4n. The energy spect" of 
the Hamiltonian n(t) is independent of the parameter t in this case. The energy curves are 
horizontal and equidistant. 

The evolution operator for T = 1 (i.e. over the system period) is also independent o f t :  

. . . . .  . . . . .  I . . _ _  
. . . . . .  0 0 0  ... 
. . . . . .  0 0 0 ..I.' 

. . . . . .  0 0 0  ... 

In the original diabaticrepresentation this evolution operator has a very simple form: 

. . . _  . . . .  
U(t, t + 1) = 

. . .  
. . . .  . . . .  . . . .  
... 0 0 0  
... 0 0 0  
... 0 0 0  

. . . .  . . . .  . . .  

. . .  . . . .  .i . . _ _  
. . . . . .  0 0 0  ... 
. . . . . .  1 0 0  ... 
. . . . . .  0 1 0  ... 

. . . .  . . . .  . . .  

. . ~ (35) 

We use the notation for the operator U ( t ,  t + 1) in this basis given by 

U E $ ( t ,  t + 1) = (U@,  t + l )Y+Tt ) ,  Y Y t  -k 1)) 

where a,  p denote + or -. This infinitematrix can be easily calculated using the Fourier 
representation for the functions Y*," and operator U ( t ,  t + 1): 

Operator U does not depend on the parameter t .  
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Now we are going to calculate the evolution operator for the half-period U ( t ,  t + 112) 
in the Fourier representation which depends on t :  

It can be written in the form 

This form of the evolution operator shows that during half of the period the initial data 
which have a zero '+' component (f+.,(O) = 0) are transformed into the function with the 
zero '-' component (f-,"(l/Z) = 0) and vice versa. If one starts from the localized initial 
data, for example f-..(O) = S(n), then, after the half-period, it will be delocalized in the 
original diabatic representation 

After the second half of the period the function will be localized and the '+' component 
will again be equal to zero. 

We shall calculate the evolution operator in the adiabatic basis for t = 1/4. 
Corresponding bases are 

We are now going to calculate the operator Q in the adiabatic bases. It is possible to 
consider a new Fourier transformation, associated with the adiabatic basis. A variable, 
conjugated to the index n, will be denoted by p ,  and the operator Q in this Fourier 
representation will be denoted by @. Operator @ corresponding to the evolution between the 
stationary points is the operator of multiplication by the matrix 

@(1/4,3/4) = @(3/4,5/4) = 
i COS p/;? -ie-'P/z sin p / 2 )  , (40) 

-ie1plz sin p / 2  -icos p i 2  

One can easily verify that 

Q(3/4,5/4)Q(1/4,3/4) = u(1/4.5/4) 

due to the diagonal form of the evolution operator in the diabatic Fourier basis. 



Doubly periodical in time and energy exactly soluble system 4379 

5. Conclusions 

The presence of two periods is characteristic for the model under consideration. In the non- 
symmetric case, the periods are r+ = 2n/co+  and r- = 2s/cw-.  The adiabatic potential 
curves and the Hamiltonian are not periodic in t .  

In the symmetric case o+ = o- these periods coincide, but a new period appears, i.e. 
that of the adiabatic potential curves. Alternatively, it could be said that in the symmetric 
case the adiabatic potential curves are symmetric both in translations over time and energy. 
In the non-symmetric case the translational symmetry is somewhat more complicated: the 
elementary cell is a parallelogram on the ( t .  .E)-plane. 

In the dynamic problem the periods do not appear on the same footing, as is seen, for 
instance, from formula (20). The explicit expression for the evolution operator generally 
looks quite complicated and deserves further analysis. Physically, it could be expected that 
in the general double periodic case the time propagation does not follow a regular pattem. 

The formulae are much more transparent when the periods are in a simple ratio. The 
evolution pattern is particularly lucid and regular in the isospectral case. The latter represents 
a regime with an interaction of intermediate strength.  the more detailed analysis of 
the physically important adiabatic and antidiabatic limits could be the object of further 
consideration. 

It i s  rather interesting that the solution of the dynamic problem can be  expressed 
through trigonometric functions only. For a two-state Landau-Zener case, which seems 
to be simpler, the propagator can be expressed only through the functions of a parabolic 
cylinder. Hence, the periodization of the model simplifies the problem considered to that 
which could be expected from other examples. 

The model considered here presents a kind of quantization of (1 + 1) spacetime and 
allows ‘continualiation’ when the periods of time and energy (which then plays the role of 
the space coordinate) tend to zero. If the coupling constant U is equal to zero, then we come 
to the wave equation case when propagation of the signal proceeds with constant velocities 
in boa  directions. The propagation becomes more complicated for the non-zero coupling. 
The unexpected feature is the s-t symmetry and the antidiabatic limit which returns us to 
the zero coupling case when the coupling tends to infinity. These additionaI symmetries 
need further investigation. 
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